FAST: Feature-Aware Student Knowledge Tracing
نویسندگان
چکیده
Various kinds of e-learning systems, such as Massively Open Online Courses and intelligent tutoring systems, are now producing large amounts of feature-rich data from students solving items at different levels of proficiency over time. To analyze such data, researchers often use Knowledge Tracing [4], a 20-year old method that has become the de-facto standard for inferring student knowledge from performance data. Knowledge Tracing uses Hidden Markov Models (HMM) to estimate the latent cognitive state (student knowledge) from the students’ performance answering items. Since the original Knowledge Tracing formulation does not allow to model general features, a considerable amount of research has focused on ad-hoc modifications to the Knowledge Tracing algorithm to enable modeling a specific feature of interest. This has led to a plethora of different Knowledge Tracing reformulations for very specific purposes. For example, Pardos et al. [5] proposed a new model to measure the effect of students’ individual characteristics, Beck et al. [2] modified Knowledge Tracing to assess the effect of help in a tutor system, and Xu and Mostow [7] proposed a new model that allows measuring the effect of subskills. These ad hoc models are successful for their own specific purpose, but they do not generalize to arbitrary features. Other student modeling methods which allow more flexible features have been proposed. For example, Performance Factor Analysis [6] uses logistic regression to model arbitrary features, but unfortunately it does not make inferences of whether the student has learned a skill.
منابع مشابه
General Features in Knowledge Tracing: Applications to Multiple Subskills, Temporal Item Response Theory, and Expert Knowledge
Knowledge Tracing is the de-facto standard for inferring student knowledge from performance data. Unfortunately, it does not allow modeling the feature-rich data that is now possible to collect in modern digital learning environments. Because of this, many ad hoc Knowledge Tracing variants have been proposed to model a specific feature of interest. For example, variants have studied the effect ...
متن کاملOn the Performance Characteristics of Latent-Factor and Knowledge Tracing Models
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge Tracing (LFKT) and Feature Aware Student knowledge ...
متن کاملParameterized Exercises in Java Programming: using Knowledge Structure for Performance Prediction
In this paper, we study the effect of using domain knowledge structure on predicting student performance with parameterized Java programming exercises. Domain knowledge structure defines connections between elementary knowledge items. While known to be beneficial in general, it has not been used to predict performance. We compare five different approaches for this purpose: Bayesian Knowledge Tr...
متن کاملA Framework for Multifaceted Evaluation of Student Models
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained from educational data vary in their predictive perf...
متن کاملLeveraging First Response Time into the Knowledge Tracing Model
The field of educational data mining has been using the Knowledge Tracing model, which only look at the correctness of student first response, for tracking student knowledge. Recently, lots of other features are studied to extend the Knowledge Tracing model to better model student knowledge. The goal of this paper is to analyze whether or not the information of student first response time of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013